3. Mechanical Properties

31 Tensile Strength
The stress-strain curve when tension is applied to ASTM-D638 type 1 test piece of Iupilon /
NOVAREX at a strain velocity of Smm/min is shown in Fig. 3 = 1—1.
The following are the values of Iupilon / NOVAREX at room temperature.
0, =54~ 64 Mpa (550 ~ 650kgf/cm?)
O =159~ 69 Mpa (600 ~ 700kgf/cm?)
Ey=6~8%
Eb,=90~140%

The temperature characteristic of the tensile yield stress
of Tupilon / NOVAREX is shown in Fig. 3 = 1—2.

.The influence of strain velocity is shown in Fig.3 = 1—3, 4.

The relation with the tensile yield stress at a low strain velocity
can be displayed by the straight line as shown in Fig.3 = 1—3, but
increases rapidly at a high strain velocity as shown in Fig.3 = 1— 4 .

The relation between molecular weight and tensile yield stress is shown

inFig.3+1-=5, 6, 7.
Iupilon / NOVAREX becomes t brittle break completely at Mv = 15000.
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When Iupilon / NOVAREX is heat-treated, the hardening phenomenon is observed as shown in Fig. 3 = 1 —8,
9. The yield strength rises even at 50°C but causes the hardening earliest at 130-150°C as shown in Fig. 3~
1-10.

The comparison of mechanical properties of Iupilon / NOVAREX with other resisns is as shown in Fig. 3+ 1

—11, 12, 13 and 14.
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3-2 Compressive Strength
The compressive strength of Tupilon / NOVAREX is 74~88Mpa (750 ~ 900kgf/cm?) and modulus

of elasticity is 1.7 ~1.9Mpa (17x10° ~19x10°kgf/cm?). Also, the rate of deformation at yield is 8 ~
10%.

The relation between compressive strength, modulus of elasticity and temperature of Iupilon /

NOVAREX is shown in Fig. 3 - 2—1.
The Poisson’s ratio of Tupilon / NOVAREX is 0.38.
A comparison with other resins is shown in Table 3 - 2—1.
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Table 3 - 2—1
Compressive Strength Compressive Strength
Name (ASTM—D695) Name (ASTM—D695)
MPa (kgf.”cm’) MPa (kgf”cm’)
Polycarbonate 76.5 (780) Rigid cellulose butyrate 53.0~154 (540~1570)
Glass fiber reinforced
Rubber modifiecd PVC [ 35.3~62.8 (360~640) | o oo lomoree 91.2~108 (930~1100)
polystyrene
High impact strength
28.4~62.8 (290~ 1lul 105~1 1070~1
bolystyrene. (HIPS) 8.4~62.8 (290~640) [Cellulose acetate 05~176 (1070~1790)
Cellulose propionate 49.0~154 (500~1570) |Glass fiber reinforced nylon 112 (1140)
High i t Str thyl
igh impact strength ethyl | co ¢ o 45 (710~2500) [Rigid cellulose acetate 133~253 (1360~2580)
cellulose
Ethyl cellulose 69.6~245 (710~2500) [Modified acrylate (MMA) |44.1~98.1 (450~1000)
Soft cellulose acetate 91.2~140 (930~1430) [Polyacetal 36.3 (370)
Soft cellulose butyrate 53.0~154 (540~1570) [Polypropylene 59.8~69.6 (610~710)

3

Flexural Strength

The flexural strength of Tupilon / NOVAREX is 80~90Mpa (820~ 920kgf” cm”) and the flexural
modulus of elasticity is 2. 26GPa
~90°.

(23000kgf~ cm?) . Also, it does not break when bent to an angle of 80

The temperature characteristics and the influence of molecular weight on flexural strength are shown in
Fig. 3 = 3—1, 2 and 3, respectively.
The change in flexural strength by heat treatment is shown in Fig. 3 = 3—4.
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A comparison with other resins is shown in Fig. 3 * 3—5 and Table 3 + 3—1.
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Table 3 -3—1
Flexural strength Flexural strength
Name (ASTM—D790) Name (ASTM—D790)

MPa (kgf”cm®) MPa (kgf.”cm®)
Polycarbonate 80.4~90.2° (820~920") [Teflon NB
High impact strength NB Chlorofluoroethylene NB
polystyrene (HIPS)
Cellulose propionate 27.5~64.7" (280~660%) [Glass fiber reinforced nylon 140~155 (1430~1580)
High impact strength ABS ~ |48. 1~55.99  (490~570) [Polystyrene NB
High impactstrengt ethylene |, 51> 5 (280~430) |ABS 53.0~77.5 (540~790)
cellulose
Ethyl cellulose 27.5~70.6 (280~720) |Rigid cellulose acetate 41.2~70.6" (420~720%
Soft cellulose acetate 18.6~50.0 (190~510%) |[Nylon NB
Soft cellulose butyrate 17.7~36.3" (180~370%) |Acrylate (PMMA) 62.8~91.2 (640~930)
Rigid cellulose butyrate 27.5~55.9 (280~570) [Polyacetal 100 (1020)
Glass fiber reinforced 13 (1150) Polypropylene 56.9 (580)
polystyrene

NB =no break,

d=yield stress




34 Impactstrength

The impact values of Iupilon / NOVAREX are as follows:

I1zod method, with notch (thickness 3.2mm) ASTM D256 740~1000J/m

Izod method, with notch (thickness 6.4mm) ASTM D256 98~250J/m
Izod method, without notch (thickness 3.2mm) >3700]/m
Charpy method, with notch (thickness 6.4mm) ASTM D256  15~59kJ/m’
Tensile impact method (thickness3.2mm) ASTMD 1822 690 ~ 880 kJ/m”’ (700
(thickness 1.6mm) ASTMD 1822 1100~1500 kJ/m* (1100~1

Falling ball method (thickness 3.2mm)
Tip of ball 12.7mmR, circular support 50.8mm ¢
Tip of ball 20.0mmR, circular support 90 mm ¢

240~310J
170~230J

(75~102kgf.cm/cm)

(10~25kgf.cm/cm)
(>380kgf.cm/cm)

(15~60kgf.cm/cm?)

~900 kgf.cm/cm?)(L)
500 kgf.cm/cm?)(L)

(24~32kgf.m)
(17~23kgf.m)

The temperature characteristic of the impact value of Tupilon / NOVAREX is shown in Fig. 3 - 4—1 and
3-4—2. The Izod impact values and the falling ball impact values indicate brittle break at the
temperature around -50°C, and below -70°C, respectively. (The temperature that break shifts from

ductility to brittleness is called the transition temperature). Also, as shown

in Fig. 3 - 4—3, the brittle

break is generated when the thickness becomes a constant value but the specific thickness and the state of

change depend on the kind of the impact.

The influence of molecular weight on impact values are shown in Fig. 3 - 4—4, 5 and 6.
In the temperature region where the ductile rupture is shown, the molecular weight which shows its

maximum in any test method exists.
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The impact value of Tupilon / NOVAREX is known to be deteriorated by heat treatment as shown in Fig.

3.4-7, 8, 9 and 10. It decreases rapidly in the Izod impact

at 125°C, shows the deterioration even at 50°C and

75°C after a long time. However, it does not show the brittle break in the falling ball impact even at 125°C and

1000hours. The change in impact character when treated at different temperature in a given time and the rapid

thermal hardening at 100~ 140°C are observed as shown in Fig. 3. 4-10.
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A comparison with other resins is shown in Fig. 3 = 4—13
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3-5 Hardness
The various hardnesses of Tupilon / NOVAREX are shown in Table 3 = 5—1.

Table 3 - 5—1 Mv=2.4 x 10
Brinell hardness after 10 sec. 88.3~103MPa (900~1050kg/cm’)
DIN53456, load0.5kN (50kgf)  after 60 sec. [85.3 ~98. IMPa (870~1000kg/cm’)
Rockwell hardness (ASTM—D785) M60~80, L90~100, R122~124
Shore Durometer hardness D82

The Mar resistance of lupilon / NOVAREX is shown in Table 3 = 5—2.

Table 3 - 5—2 Surface hardness of Tupilon / NOVAREX injection molded product (ASTM-D673-44)

Mv=2.4 x 10*
Quantity of carborundum (g) 200 400 800 1200 1600
Mar resistance (%6) 90.2 82.7 72.9 58.5 56.1

Also, a comparison with other resins is shown in Table 3 = 5—3.

Table 3 * 5—3 Comparison of surface hardness of Iupilon / NOVAREX with other resins
(ASTM-D673-44)
Carborundum dropping quantity 500g Mv=2.4 x 10*

Sarml Mar resistance
ample
P (Ratio of luster before and after abrasion)

Tupilon / NOVAREX compression

molded product 8%
Acrylate (MMA) 88%
Vinyl chloride 85%
Glass sheet (crown glass) 99%

A comparison of Rockwell hardness of Iupilon / NOVAREX with other resins is shown in Table 3 = 5—4.

Table3 - 5—4
Name Rockwell hardness Name Rockwell hardness
(ASTM—D785) (ASTM—D785)
Low density polyethylene D45 ~ 52% Rigid cellulose butyrate R79 ~ 114
Medium density polyethylene D45 ~ 65% Glass fiber reinforced MOT ~ MOS
polystyrene
POLYCARBONATE RI122 Cellulose acetate R68 ~ 115
Rubber modified PVC RIO0 ~110 Chlorofluoroethylene RI112
High impact strength polystyrene M30 ~ 65 Glass fiber reinforced nylon M96 ~ MIOO
(HIPS)
Cellulose propionate R20 ~ 120 Polystyrene M30 ~ 55
High impact strength ABS R85 ~ 100 ABS R85 ~ 118
High impact strength R70 ~ 90 Rigid cellulose acetate RIOT ~ 123
ethylcellulose
Ethylcellulose R80 ~ 120 Nylon RIO8 ~ 118
Soft cellulose acetate R49 ~ 103 Acrylate (PMMA) L58 ~ 59
Soft cellulose butyrate R47 ~ 95 Polyacetal RI20 (M94)
High density polyethylene R63 ~ 70% Polypropylene R85 ~ 95

* indicates Shore hardness



The Rockwell hardness of Tupilon / NOVAREX is changed by heat treatment as shown in Fig.3 = 5—1.
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Fig. 3= 5—1 Change in Rockwell hardness by heat treatment (treated temperature 125°C)

Also, the Martens scratch hardness is shown in Fig.3 = 5—2.
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Fig. 3 = 5—2 Martens scratch hardness



3 - 6 Abrasion Resistance and Friction Characteristics

The amount of wear of Iupilon / NOVAREX by the Tabor-abrasion tester (CS — 17wheel,

ASTM
— DI1044—56 was 13mg/1000 cycles.

Also, when the relation of
PV=53.9MPa +* cm ./ s
(PV=550kgf”cm2+* ¢cm./ s)

exists between the contact pressure MPa (kgf.”cm2) and relative velocity (Vem/s) in the contact

abrasion between [upilon / NOVAREX and iron, this is the limit it can withstand heat of friction.
This relation is shown in Fig. 3 = 6—1.
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Fig.3 - 6—1 PV values of Iupilon / NOVAREX

Iupilon / NOVAREX melts in the combination of P and V in the range at the upper right of the

curve. In this case, the coefficient of friction was 0.5-0.6 at P=4.9MPa (50kgf/cm?), V=0.01cm/s
The coefficient of friction of polycarbonate is shown in Table 3 = 6—1 (not lubricated).

Table 3 = 6—1
Low velocity High velocity
(Iem/s) (173—202 cm/s)
Between polycarbonates 0.24 About2.0
Polycarbonate on steel 0.73 0.82
Steel on polycarbonate 0.35 0.45

A comparison of abrasion (ASTM —D1242—56) between polycarbonate and other resins is shown
in Fig. 3 - 6—2
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3 -7 Shear Strength

stress is 64.7MPa (660kgf/cm?).

The shearing yield point of Tupilon / NOVAREX is 37.3MPa (380kgf/cm?) and the shear breaking

The temperature characteristic of the shearing modulus of elasticity is shown in Fig. 3 = 7—1, from
which it can be seen that [upilon / NOVAREX is stable at high temperature and it is also stable at low

temperature. As a general rule, the substance becomes brittle rapidly when the shearing modulus of

elasticity (or rigidity) exceeds about 1GPa (10*kgf/cm?) but the low temperature characteristic of

Iupilon / NOVAREX is better than those of other resins at -100°C

as it does not exceed 1GPa

10*kgf/cm”.
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Figz. 3-7—1

Relation between temperature and shearing modulus of elasticity



3-8 Long Time Behaviour Under Load
3 - 8 = 1 Load Fatigue Characteristics

When the fatigue resistance of Iupilon / NOVAREX is examined, it becomes as shown in Fig. 3 -
8+ 1—1, 2, 3 and4 (determination method is constant load 1000 cycle/min, room temperature). The
influence of the shape of test piece at the tensile compression fatigue is shown in Fig. 3 = 8 = 1—1. The
difference of the shape is obviously shown, especially the influence of cutting is shown extremely in the
cutting sample. The results of tensile compression fatigue, flexural fatigue, and torsional fatigue are shown
inFig.3-8-1—2, 3-8-1—3 and 3 -8 - 1—4, respectively.

In any case, the fatigue resistance has improved by the increase of the molecular weight.
The influence of temperature in the rotation flexural fatigue (test piece is made by cutting) is shown in Fig.
3-8+ 1—5. It is observed that the fatigue limit rises drastically as the temperature decreases. Also, Fig. 3-8 *

1 — 6 shows the results of the fatigue of samples with notch.
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Fig.3 - 8 -+ 1—1 Change in fatigue resistance by the Fig. 3 + 8 + 1 —2 Relation between molecular weight and fatigue
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Fig.3 + 8 - 1—3 Fatigue resistance in flexure Fig.3 -8 + 1—4 Fatigue resistance in torsion
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The results of comparing the fatigue resistance by the Sonntag tester for various resins are shown in Table3 = 8 = 1 —
1.

Table 3 = 8 - 1—1 Fatigue resistance of various resins

Break stress MPa  (kgf.”'cm2)
Name 4 5 6 7
10" cycles 10° cycles 10° cycles 10" cycles
Vinyl chloride (PVC) 36. 3 (370) 25. 5 (260) 18. 7 (191) 16. 7 (170)
Polystyrene 24. 1 (246) 14. 7 (150) 10. 8 (110) 10. 0 (102)
Derivatives of fibrillar system 20. 8 (212) 16. 2 (165) 13. 2 (135) 1. 1 (113)
Polyamide (nylon) 15. 1 (154) 12. 4 (126) 12. 1 (123) 11. 8 (120)
Polyethylene 13. 7 (140) 11. 8 (120) 11. 3 (115) 11. 0 (112)
Polypropylene 16. 7 1700 | 13.1 (134 | 1200 (122 | 11. 0 (112)
Acrylate (PMMA) 30. 3 (309) 27. 8 (283) 27. 8 (283) 27. 8 (283)
Polycarbonate 40. 1 (409) | 26 9 (274) 14. 9 (152) 9. 8 (100)
Polyacetal 2.3 629 | 283089 | 2 o (o7)
Polyphenylene ether (PPE) 8 2—13. 7
(84—140)
Polysulphone 6. 9 (70)
Modified PPE 17. 2 (175)




3-8+ 2 Creep Characteristics
The tensile creep characteristics, flexural, compression creep characteristics of [upilon / NOVAREX are

shown in Fig. 3+8+2—1, 2, 3 and 3-8-2—4, respectively. Also, a comparison with other resins is shown in Fig.
3-8+-2—5andé6.
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The creep rupture line of ITupilon / NOVAREX is shown in Fig. 3 = 8 -+ 2—7 and 8. A comparison with other
resins is shown in Fig. 3 = 8 = 2—9.
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3 -8+3 Deformation Under Load and Recovery

The deformation under compressive load of polycarbonate is as shown in Table3 - 8 « 3—1.

Table3 = 8 = 3—1

Temperature Load ASTM—D621—51
©C) MPa (kef. cmd) Deformation after 24 hr.
(%)
25 21. 5 (280) 0. 220
10 21. 5 (280) 0. 282
25 13. 7 (140) 0. 101
10 13. 7 (140) 0. 080

Also, when a compressive load of 1.11kN (113.4kgf) on ball (p10.16) is applied, the rate of instantaneous recovery with a
deformation of 1.42mm was 97% and the recovery rate was 100% after 5 days.
The tensile deformation and recovery of polycarbonate at 100°C are shown in Table 3 = 8 = 3—2 (see Fig. 3 = 8 = 2—1).

The tensile deformation at normal temperature and recovery in case load was removed after 1,000 hours are shown in Fig.3 = 8 -
3—1.
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Fig. 3 = 8 = 3—1 Recovery behaviour of polycarbonate
Table 3+ 8 -3—2
Stress Initial sttrain Total deformation Recovery rate
MPa (kgf,/cm?) (%) Creep after 1,000 hrs (%) (Recovery /Total
(%) deformation)
(%)
3. 84 (39. 2) 0. 0298 0. 2797 0. 3095 38. 5
7. 70 (78. 5) 0. 3059 0. 6941 1. 000 32. 2
15. 4 (157) 0. 7267 1. 300 2. 027 35. 3
19. 2 (196) 1. 162 3. 500 4. 662 21. 0




3+ 8- 4 Relaxation of Stress
The relaxation curves of tensile stress of [upilon / NOVAREX are shown in Fig. 3 * 8§ - 4—1.
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Fig.3 - 8 = 4—1 Relaxation of tensile stress of Iupilon / NOVAREX
(Initial load 9.8MPa, however, 4.9MPa in case of temperature of 120°C and 130°C)

3-8+ 5 Practical Permissible Stress

Table 3 - 8 - 5—1

Practical Permissible StressMPa  (kgf,”cm®)

Tensile Compressive
Intermittent load (room temperature) 27. 5 (280) 41. 2 (420)
Intermittent load (in 52°C air) 23. 5 (240) 23. 5 (240)
Intermittent load (in 100°C air) 20. 6 (210) 20. 6 (210)
Intennittent. loa.d (' room 27, 5 (280) AL 2 420)
temperature, in moisture, Vapor)
Permanent load (room temperature) 13. 7 (140) 13. 7 (140)
Repeating or oscillating 6. 9 (70) 6. 9 (70)




39 Stress Crack

When plastic is used for practical items, it sometimes encounters the phenomenon in which craze and crack
are generated. There are two cases, that is, the generation of this craze and crack when only stress was added
(stress crack), and by a microstress under the coexistence with foreign substance (environmental stress crack).
Also, the craze and crack are clearly distinguished by the transmission electron microscope observation etc.
That is, as for the craze, the density of the molecular chain is low by the local orientation and it becomes the
structure that contains void like the sponge while the crack forms a complete space. However, because the
craze and crack can not be strictly distinguished by the naked eye, the crack is also included in the craze of
this report which was observed by the naked eye.
When adding a flexural load or flexure to the flexural test piece of Iupilon / NOVAREX, the craze is
generated after a certain induction period (it can be considered that craze is generated in case of uniaxial
stress). After that, the growth and termination of the generated craze or the generation of new craze etc. is
observed. The knowledge about the induction period of craze generation becomes a very important issue
from the practical view.
The relation between the induction period of craze generation and the flexural stress under constant load of
Iupilon / NOVAREX was shown in Fig. 3-9-1. The induction period shifts to the extended period of time with
the decrease of stress and becomes infinite finally. However, in case of Iupilon / NOVAREX, approximately
29.4MPa (300kgflem®) at Mv = 2.4~3.0x 10", approximately 19.6MPa (200kgf/cm®) at Mv=2.2x10"* become the

stress that the craze is not generated.

60 "
50 -
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stress 30
20 10° 10° 107 10° 10'  10° 10°

induction period of craze generation (min)

Fig. 3 * 9—1 Change in induction period of craze generation by flexural stress

The influence of heat treatment or additives on the craze generation is shown in Fig. 3 = 9—2. The craze generation by
heat treatment becomes easy as indicated in this figure. The behaviour of the craze generation near the room
temperature was shown in Fig. 3 = 9—3. As indicated in this figure, the rate of the craze generation rapidly
becomes low at low temperature zone.
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Fig. 3 = 9—3 Behaviour of craze generation in the vicinity of room temperature

The behaviour of craze generation in case of adding the constant strain to flexural test piece of Iupilon/
NOVAREX was showninFig.3 = 9—4, 5, 6, 7 and 8. The influence of temperature was shown in Fig.3 = 9—
4, 5, the craze generation becomes easy with the increase of atmosphere temperature.

The influence of the molecular weight was shown in Fig. 3 = 9—6. The influence of heat treatment was shown in

Fig.3 = 9—7 and 8. The craze generation becomes easy as the case of the constant load.
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